
Policy Gradient Algorithms

• Why?

– Value functions can be very complex for large

problems, while policies have a simpler form.

– Convergence of learning algorithms not guaranteed

for approximate value functions whereas policy

gradient methods are well-behaved with function

approximation.

– Value function methods run into a lot of problems in

partially observable environments. Policy gradient

methods are “better" behaved even in this scenario.

Policy Gradient Methods

• Policy depends on some parameters !

– Action preferences

– Mean and variance

– Weights of a neural network

• Modify policy parameters directly instead of

estimating the action values

• Maximize:

Liklihood Ratio Method

• Computing gradient of performance w.r.t.

parameters:

• Estimate the gradient from N samples:

REINFORCE (Williams ’92)

• Incremental version:

Reinforcement

Baseline
Characteristic

Eligibility

Special case – Generalized LR-I

• Consider binary bandit problems with

arbitrary rewards

Reinforcement Comparison

• Set baseline to average of observed

rewards

• Softmax action selection

Reinforcement Comparison contd.

Computation of

characteristic eligibility for

softmax action selection

Continuous Actions

• Use a Gaussian distribution to select

actions

• For suitable choice of parameters:

MC Policy Gradient

• Samples are entire trajectories

s0, a0, r1, s1, a1, . . . , sT

• Evaluation criterion is the return along the path,
instead of immediate rewards

• The gradient estimation equation becomes:

where, Ri(s0) is the return starting from state s0
and pi(s0;!) is the probability of ith trajectory,
starting from s0 and using policy given by !.

MC Policy Gradient contd.

• The “likelihood ratio" in this case evaluates
to:

• Estimate depends on starting state s0.
One way to address this problem is to
assume a fixed initial state.

• More common assumption is to use the
average reward formulation.

(1)

MC Policy Gradient contd.

• Recall:

– Maximize average reward per time step:

– Unichain assumption: One set of “recurrent"
class of states

– !" is then state independent

– Recurrent class: Starting from any state in the
class, the probability of visiting all the states in
the class is 1.

MC Policy Gradient contd.

• Assumption 1: For every policy under

consideration, the Unichain assumption is

satisfied, with the same set of recurrent

states.

• Pick one recurrent state i*. Trajectories are

defined as starting and ending at this

recurrent state.

• Assumption 2: Bounded rewards.

Incremental Update

• We can incrementally compute the summation in
Equation 1, over one trajectory as follows:

• zT is known as an eligibility trace. Recall the
characteristic eligibility term from REINFORCE:

• zT keeps track of this eligibility over time, hence
is called a trace.

Simple MC Policy Gradient Algorithm

Adjust ! using a simple stochastic gradient ascent rule:

where " is a positive step size parameter.

Simple MC Policy Gradient Algorithm contd.

• The algorithm computes an unbiased

estimate of the gradient.

• Can be very slow due to high variance in

the estimates.

• Variance is related to the “recurrence time”

or the episode length.

• For problems with large state spaces, the

variance becomes unacceptably high.

Variance reduction techniques

• Truncate summation (eligibility traces)

• Decay eligibility traces. In this case, the
decay rate controls the bias-variance trade
off.

• Actor-Critic methods. These methods use
value function estimates to reduce
variance.

• Employ a set of recurrent states to define
episodes, instead of just one i*.

