Policy Gradient Algorithms

« Why?
— Value functions can be very complex for large
problems, while policies have a simpler form.

— Convergence of learning algorithms not guaranteed
for approximate value functions whereas policy
gradient methods are well-behaved with function
approximation.

— Value function methods run into a lot of problems in
partially observable environments. Policy gradient

methods are “better" behaved even in this scenario.

Liklihood Ratio Method

« Computing gradient of performance w.r.t.

parameters: ne) = Er)
= Z Q*(a)m(a; ©)
V(@) = Z Q*a)Vr(a;)
Vmla, &)
= Z()*m‘l mia; &)
a:0) ’

+ Estimate the gradient from N samples:

1 Y Vr(a;: ©)

(]
N Zli ﬁ(tl;‘l(‘i)‘)

LikelihoodRatio

V(©) =

Policy Gradient Methods

* Policy depends on some parameters O
— Action preferences
— Mean and variance
— Weights of a neural network
» Modify policy parameters directly instead of
estimating the action values
* Maximize: n©) = Er)
=2 0'(a) n(0.a)

a

O« O+a-Vn(oO)

REINFORCE (williams ’92)

* Incremental version:

Vr(®,a
AQ, = ar 7, (f)
T[(G‘) (7,)
Jdlnm(®,a
AO, =017 %
Reinft_)rcement C Characteristic
Baseline Eligibility

Jdln n(G) a)

Special case — Generalized L

» Consider binary bandit problems with
arbitrary rewards

8 ifa=1 dlnm_ a-0
MOD=1 _gira=0 08 B(1-8)

b=0anda=p-0(1-6)

AO=p-r-(a—8)

Reinforcement Comparison contd.

e 9 Computation of
n(0.a;) = — characteristic eligibility for
> e 07 softmax action selection
i=1
6
dln n(®.a;) 0 In e I
96, 96, 2 2o

d 4 Y,
=——(6, - In(Y e
89;(i 1 -)

6
e i

n
3 e
i=1

=1-

=1-n(0.a;)

Reinforcement Comparison

» Set baseline to average of observed
rewards

by =7, =11 +B- (13 =77
» Softmax action selection

AB; =a-(r—=r)l-m(O,a;))

Continuous Actions

» Use a Gaussian distribution to select
actions

_(a—uy’
m(a.p.0)=——F¢€ 2¢*
271G

 For suitable choice of parameters:
Au=o-(r=7)a—u)

Ao =(a/0)-(r=7)(a—p) ~0’)

MC Policy Gradient

« Samples are entire trajectories
Sg» 89y M1y S1s @1y « - -, ST

« Evaluation criterion is the return along the path,
instead of immediate rewards

» The gradient estimation equation becomes:
Vpils0;9)
Pils0: O]

. 1Y
V(o) = TZRJ*‘DJ '
Y=t

where, Ri(sy) is the return starting from state s,
and p;(s ;G)S) is the probability of it" trajectory,
starting ?rom Sy and using policy given by O.

MC Policy Gradient contd.

* Recall:
— Maximize average reward per time step:
N—-1
p(s) = lim %E (Z re | so=)

— Unichain assumption: One set of “recurrent”
class of states
— pTis then state independent

— Recurrent class: Starting from any state in the
class, the probability of visiting all the states in
the class is 1.

MC Policy Gradient contd.

The “likelihood ratio" in this case evaluates
to:

Vpi(s0:0) T Vn(s;,a;0) @)

pils0:©) T m(s5,a;:0)

Estimate depends on starting state s,,.
One way to address this problem is to
assume a fixed initial state.

More common assumption is to use the
average reward formulation.

MC Policy Gradient contd.

Assumption 1: For every policy under
consideration, the Unichain assumption is
satisfied, with the same set of recurrent
states.

Pick one recurrent state i*. Trajectories are
defined as starting and ending at this
recurrent state.

Assumption 2: Bounded rewards.

Incremental Update

* We can incrementally compute the summation in
Equation 1, over one trajectory as follows:

Vr(se a:;0)

Z = z+
o ! (s, ag ©)

1 .
Ry = R+ f+_1 [re — Ry

» z;is known as an eligibility trace. Recall the
characteristic eligibility term from REINFORCE:

dlnmlay, &)
ae

* z; keeps track of this eligibility over time, hence
is called a trace.

Simple MC Policy Gradient Algorithm contd.

* The algorithm computes an unbiased
estimate of the gradient.

» Can be very slow due to high variance in
the estimates.

* Variance is related to the “recurrence time”

or the episode length.

* For problems with large state spaces, the
variance becomes unacceptably high.

Simple MC Policy Gradient Algorithm

Algorithm 1 Simple MC Policy Gradient Algorithm
1: Set j=0,Ry=0,2=0.7=0
2: for each episode do
3: for each transition sy, az,7¢, 5¢41 do
4

Vr(s¢,a0:09)
“t+l = ~t m(86,06:0)

Rit1 = Re4+ ﬁ ["t - Rt:
6: end for
T Aj+1 = A’ + RT"-’T
& j=7+1
9: end for
10: Return Ay /N, where N is the number of episodes

Adjust © using a simple stochastic gradient ascent rule:

Ay
6 — e —_
+ o ~

where a is a positive step size parameter.

Variance reduction techniques

Truncate summation (eligibility traces)

Decay eligibility traces. In this case, the
decay rate controls the bias-variance trade
off.

Actor-Critic methods. These methods use
value function estimates to reduce
variance.

Employ a set of recurrent states to define
episodes, instead of just one i*.

